
Uncertainty Quantification: Why and How

© AdCo EngineeringGW GmbH, 2018, www.adco-engineering-gw.com

Executive Summary
As the digitization puts an ever greater pressure on companies to shorten their development cycles and reduce
costs, the demand on the predictive capability of modern Computer Aided Engineering (CAE) toolchains
increases. This implies that simulation models are not only required to correctly represent the underlying
physical system, but also that real-world variability and uncertainty must be taken into account for enabling a
shifting of the product development cycle more and more from physical experiments to the computer.
Furthermore, one has to consistently incorporate available data from physical tests into the modeling pipeline.
Uncertainty quantification (UQ) is key in improving the predictive capabilities of state-of-the-art CAE workflows.
Furthermore, it speeds up the product design and development processes, particularly in the early phases of
those processes, which not only reduces the time required to develop a product, but also the number of
potentially expensive physical experiments. Below, we will show that efficient UQ techniques available today
will change the way design decisions are made. By incorporating imperfect and incomplete information into the
computational product design process, the uncertainty in the results can be quantified. The implications of this
paradigm shift are manifold. First and foremost, it means that an even larger portion of the design process can
be carried out by using computers, which leads to reduced cost and shorter product development cycles. In the
end, the eventual product designs will be less prone to failure, while at the same time being less costly to
manufacture. AdCo EngineeringGW bundles know-how from statistics, machine learning and engineering to
provide innovative algorithms for the quantification of uncertainties in our software QUEENS. Thereby, we
enable our clients to harness the full potential that digital product development tools and processes can offer.

Decreasing costs of high-performance computing platforms as well as recent advances in computational
methods along with corresponding software solutions have led to tremendous progress in the field of Computer
Aided Engineering (CAE) in recent decades. Simulations have become omnipresent and irreplaceable in
product development processes and in the planning of production processes. Computer-based simulation
methods have reached a quite high degree of maturity, and a multitude of complex processes, for example, by
taking various physical, chemical and biological fields into account, can nowadays be reproduced with the aid
of computational models.

However, there is still often a discrepancy between the results of computational models, on the one hand, and
the results of physical experiments, on the other hand. The main reasons for this discrepancy may be found, for
instance, in the inadequacy of the chosen model to reproduce physical reality, experimental measurement
errors, and idealized assumptions for model input parameters, which do not hold in reality. Particularly the latter
point has received increased attention in academic research during the last decades and led to the rise of a
new sub-discipline of CAE, referred to as Uncertainty Quantification (UQ). Methodological breakthroughs in
recent years have made UQ approaches mature enough for industrial application. The incorporation of real-
world variability and randomness into CAE models and the rigorous quantification of these uncertainties result
in improvements of the digital design process. The consequences are that a more and more increasing portion
of the product or process design can be carried out by using computers, which substantially abridges
development cycles and reduces overall costs.

UQ enables engineers to move beyond unspecific and empirical safety factors and achieve a considerably
more detailed, nuanced, and comprehensive understanding of the system under investigation via computational
methods. Furthermore, with UQ, it is possible to incorporate available data and knowledge in the model in a
mathematically rigorous way. This is particularly important if - as often - the simulation of a system or process is
the only reasonable or even possible method of investigation.

1 Introduction
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2 What is UQ and how does it help: examples and benefits

UQ means characterizing imperfect and/or unknown information in engineering simulations with the goal of
enabling reliable predictions and facilitating decision making. In any real-world engineering setting, there is a
plethora of sources of uncertainty due to the fact that there are typically a multitude of parameters related to the
model which are based on assumptions, idealizations, and insufficient data. Examples for uncertain parameters
are, e.g., geometric uncertainties due to manufacturing imperfections and tolerances, varying properties of the
material used for a product, or uncertain load or bearing conditions. In addition to these parametric
uncertainties, the model itself is often uncertain as well. Therefore, purely deterministic analyses often fall short
of expectations in terms of prediction accuracy and reliability, since critical parameters included in the model
are either not determinable with sufficient accuracy or subject to random fluctuations, respectively.

A UQ analysis taking into account the uncertainties in the model input variables significantly improves the
predictive capability of computational design methods. Thus, it should be aimed at quantifying these
uncertainties in the simulation results as far as possible. In the context of UQ, this uncertainty is typically
represented by means of probability distributions or confidence intervals.

In addition to estimating the expected accuracy of the simulation model, the identification of the most influential
parameters by means of global sensitivity analyses and the robust design with regard to parameter
uncertainties play an important role. In almost all industries and scientific disciplines in which simulation models
are used today, e.g., in mechanical and plant engineering, aerospace engineering, mining, in the energy sector
and even in financial mathematics, there are numerous lines of evidence supporting the enormous advantages
of taking uncertainties into account in simulation models. The following examples from mechanical and
biomedical engineering should demonstrate exemplarily these advantages and the potential of UQ.

Example 1:
In some high-precision manufacturing processes, e.g., deep drawing with high-strength steels, the final
component geometry is partly influenced by sheet batch-dependent fluctuations in material properties. To
compensate for these fluctuations, iterative process and tool changes have to be made in series production,
which are particularly cost-intensive. By including such fluctuations as uncertainties in high-resolution
simulation models, they can be identified and taken into account at an early stage of the development process.
Thus, process steps and component geometries can be adapted to reduce the influence of sheet-batch
dependent fluctuations in material properties. This means that process modes can be avoided during series
production, resulting in decisive productivity advantages and significantly reduces production costs.

Example 2:
Another application for which predictive simulations using a stochastic approach are particularly valuable are
scenarios which neither allow for experiments nor theoretical considerations and simplified analytical models
due to their complexity. Various biomedical applications, which will become increasingly relevant in the future,
fall into this category. An important biomedical application of numerical simulation models, which is expected to
be used more and more routinely in clinics in the foreseeable future, is the prediction of rupture risks of
abdominal aortic aneurysms. Other application scenarios include the patient-specific design of stent grafts for
endovascular therapy of these aneurysms or the design of osteosynthesis implants for therapy of bone
fractures. In the examples mentioned above as well as in many others, the consideration of uncertainties of
certain model input parameters, e.g., patient-specific material properties, is of utmost importance, since
incorrect predictions usually have serious consequences for the individual patient.

The rigorous quantification of uncertainties in CAE models thus presents a major paradigm shift from idealized
parameter settings and modelling assumptions, which typically require safety factors when designing real-world
systems, to the incorporation of actual variability and uncertainty in the CAE process. In our view, there are
numerous benefits of incorporating UQ in the product development workflow, and two arguments for using UQ
will be outlined exemplarily in the following subsections of this white paper.
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Benefit 1: Probabilistic design yields more accurate and reliable results

If one is interested in the average response of a model or system, respectively, it is important to note that –
given the fact that the model is nonlinear with respect to the input parameters - its response computed with
statistically averaged input parameters does not equal its average response. Hence, even if one is “merely''
interested in the average model/system response, incorporating uncertainty will yield more accurate results and
provide a more realistic prediction on how the system under investigation will behave on average.

Of course, properly conducted UQ analyses can provide much more information than average system
responses. Uncertainties in system strength due to, e.g., variations in manufacturing or material properties
combined with uncertainties in field conditions, e.g., variations in loading, result in uncertainties in the system
performance. Traditionally, such uncertainties were addressed by using rather large safety factors. This implicit
way of taking uncertainties into account often leads to “over-designed'' systems, which are, in fact, reliable but
notably more expensive to produce than actually required. Moreover, safety factors cannot encompass all
combinations of uncertainties in the system, which might propagate and amplify through the system in ways
that are difficult or impossible to anticipate. This can lead to system or component failures, increasing the
overall lifecycle cost. UQ techniques can make uncertainties explicit and quantifiable, thus providing a more
reliable way to assess designs or product variants. In the end, the overall costs of product development
processes are substantially reduced.

The difference between a deterministic design and decision-making process and a workflow incorporating UQ
is shown in Figure 1. It is evident that additional information obtained by UQ techniques might lead to a different
product design.

Figure 1:  Comparison of probabilistic and deterministic system design: here, a deterministic analysis yields a different         
assessment of system performance compared to a probabilistic approach including uncertainty in both strength and loading 
conditions. The safety margin between deterministic strength of the system and average loading conditions in this example is 
rather large. The strength-to-load ratio is approximately 2.4, which is often  deemed sufficient. The probabilistic analysis, 
however, provides an entirely different picture. The relatively large area where the two probability densities intersect indicates 
clearly that the chance for the load to exceed the strength is quite significant. Thus, the current design based on purely 
deterministic principles is not safe and needs to be improved.
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Benefit 2: Identification of the most important parameters and efficient resource allocation

Another important benefit of UQ is the identification of the most influential input parameters via global sensitivity
analysis. Figure 2 depicts the so-called main effect indices of an exemplary system. The depicted indices
indicate which fraction of the output variance results from the isolated variation of each of the individual
parameters. The parameters with the largest sensitivity indices should obviously be the focus of subsequent
investigations.

By computing global sensitivity indices, one can determine the most influential parameters regarding the output
uncertainty. Once these have been identified, it is possible to efficiently allocate resources to reduce the
uncertainty in the outcome. This could, e.g., trigger additional experiments with the aim to collect more data on
some of the input parameters, to build more accurate, less uncertain probabilistic models for the respective
parameters. Another option would be the refinement and improvement of the manufacturing processes to
reduce the variability of a specific input parameter.

Figure 2: Main effect indices of an example function. The bar graph shows that the parameter x1 clearly has the largest 
impact on the result. The parameters x2 and  x3 have only a  minor influence in comparison and the effect of the remaining 
parameter is essentially negligible.

Performing a UQ analysis is challenging for several reasons, such as potential lack of the required technical
know-how and in-depth statistical knowledge to model uncertainties and choose an appropriate, efficient
method for the propagation of these uncertainties through the model or system, respectively. The second
hurdle used to be the substantially increased computational cost compared to standard deterministic CAE
analysis of a system. While the computational cost associated with a stochastic analysis used to be orders of
magnitude larger than a deterministic analysis when using traditional UQ approaches, modern UQ methods
have reduced this cost to a rather moderate manifold of that of a deterministic analysis. In the following, we will
briefly sketch how uncertainties can be described mathematically and present some approaches to the
propagation of uncertainties through a simulation model.

3 How to perform efficient UQ analysis
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Mathematical description of uncertainties

First, an appropriate mathematical description or statistical model for the uncertainties, which influence the
system under investigation is required. Typically, random variables and random fields or a combination thereof
are used to model uncertain input parameters of simulation models. Random fields are essentially the
extension of multivariate random variables to an infinite number of dimensions. Figure 3 depicts two example
realizations of two non-Gaussian random fields for illustration. It is a mathematical construct to model a process
which dependence on a parameter can be captured by probabilistic laws. This way, spatial or temporal
correlation can be considered and incorporated in the model. The notion of a random field allows to model
parameters that are subject to spatial and stochastic variation at the same time.

Examples where random fields are used to model uncertainty include spatially varying material and friction
parameters, variations in component dimensions due to unavoidable manufacturing tolerances or blurred
geometries of biological structures due to insufficient resolution of medical imaging. In the context of UQ, it is
not sufficient to determine a probabilistic model for the uncertain input parameters, but one also needs to be
able to generate samples from this probabilistic model, to obtain different realizations of the random quantities
for which the solution of the model can actually be computed. For random variables, this is rather
straightforward. For random fields, though, this task is considerably more complex and requires special
techniques and algorithms.

Figure.3: Realizations of two-dimensional random fields.

As soon as a suitable probabilistic description of the uncertainties in the model has been determined, the next
and crucial step in UQ is the so-called propagation of uncertainties through the simulation model. This is
typically achieved by evaluating the model for a certain number of realizations of the random inputs. UQ
approaches differ in the way these realizations are chosen. The choice varies between generating realizations
entirely randomly, on the one hand, and choosing them in a purely deterministic fashion at a number of
integration or collocation points, on the other hand. Moreover, UQ methods use the information obtained from
individual model evaluations in different ways and impose different assumption about the relationship between
model input and model output.

In the following, we will briefly address three classes of methods that are used to propagate uncertainty through
computational models. It is impossible to provide blanket advice on which method is the best, since the
efficiency of each individual approach is highly dependent on several factors. These factors are, amongst
others, the number of random inputs, i.e., the so-called stochastic dimension of the problem, and the
characteristics of the problem, that is, for instance, the nonlinearity and the type of nonlinearity in the mapping
between inputs and outputs are crucial for the efficiency of a chosen method.

Propagation of uncertainties through the model
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We merely consider UQ approaches that are applicable in combination with industrially applicable simulation
models. More precisely, we do not consider so-called intrusive UQ methods, which would require access for
being able to modify the source code of the CAE software, but rather methods that can be wrapped around
existing CAE software packages without requiring any modification of that software.

The oldest and conceptually simplest UQ approaches are based on random or quasi-random sampling, i.e.,
drawing samples from the random input parameters and the subsequent evaluation of the simulation model for
these parameters settings. Conclusions about the quantity of interest are then drawn based on the law of large
numbers.

The most prominent example of sampling-based methods is the Monte Carlo (MC) method, where the sampling
is entirely random. While conceptually rather simple and easy to implement, the computing effort associated
with an MC analysis is so demanding that it is usually infeasible for all but the simplest simulation models. The
use of more elaborate sampling strategies, such as Latin Hyper Cube, sampling can alleviate this
computational burden to some extent. Especially for the computation of rare events, sampling analysis can be
significantly expedited by the use of sampling schemes that were designed particularly for the purpose of
assessing small failure probabilities in the context of reliability analysis. State-of-the-art results can be obtained
with, e.g., subset simulation or sequential importance sampling approaches.

Sampling-based approaches

Generating so-called surrogate models or emulators is another powerful technique to reduce the computational
cost associated with UQ. Essentially, the process of surrogate-based UQ consists of two steps. In the first step,
a statistical model of the actual simulation model is generated based on a number of sample evaluations. In the
second (offline) step, the surrogate model can then be used instead of the simulation model in combination with
various sampling techniques to compute the desired quantities of interest. This is a feasible approach due to
the fact that evaluating the surrogate model is computationally rather cheap. In fact, one computation often
takes only a fraction of a second.

Bayesian surrogate models based on Gaussian processes, often referred to as emulators, have additional
capabilities in the sense that they provide estimates of the expected local accuracy of the surrogate model. This
information can be readily used to construct sequential experimental design schemes to refine the surrogate
model locally where needed.

Surrogate-model-based approaches

Particularly for complex nonlinear simulation models, a new approach has emerged from academic research,
which improves the efficiency of both sampling- as well as surrogate-based UQ schemes by incorporating
information from cheap-to-evaluate computational models with reduced fidelity into the UQ scheme. The
computational effort associated with the evaluation of modern simulation models can often be drastically
reduced when sacrificing accuracy. Reduced spatial or temporal resolution, loser solver tolerances, reduced
complexity of the physical model are only a few aspects that can be adapted to reduce computational
complexity. While this approach should obviously not be used in a deterministic setting, it is indeed feasible for
UQ, since almost all UQ techniques are based on multiple evaluations of the simulation model. The premise of
multi-fidelity UQ schemes is that a large portion - though not all - of these evaluations can be shifted from the
high-fidelity model to a cheaper-to-evaluate low-fidelity model without significant loss of accuracy overall.

Depending on the nature of the problem and the desired quantity of interest, various multi-fidelity methods are
suitable for substantially decreasing the computational costs associated with an UQ analysis. The methods
differ in the way samples are chosen and how the information from the different levels of fidelity is essentially
fused to produce an accurate probabilistic estimate of the quantity of interest. Compared to traditional UQ
approaches, the computational costs are substantially reduced by employing a multi-fidelity approach, typically
by orders of magnitude.

Multi-fidelity approaches
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Efficient UQ techniques available today will change the way design decisions are made. By incorporating
imperfect and incomplete information into the computational product design process, the uncertainty in the
results can be quantified. The implications of this paradigm shift are manifold. First and foremost, it means that
an even larger portion of the design process can be carried out by using computers, which leads to reduced
cost and shorter product development cycles. In the end, the eventual product designs will be less prone to
failure, while at the same time being less costly to manufacture. Particularly for complex nonlinear simulation
models, multi-fidelity UQ methods represent a novel approach with which the computational costs associated
with UQ can be drastically reduced, typically by orders of magnitude.

4 Conclusions
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AdCo EngineeringGW bundles know-how from statistics, machine learning and engineering to provide innovative
algorithms for the quantification of uncertainties in our software QUEENS. Since some of these very powerful
methods only require information about input and output variables, these approaches can be applied to a
variety of problems. Interfaces to commercial CAE software packages, such as ANSYS, are also available.

5 Our Solution for You
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